2,016 research outputs found

    Lattice dynamics and electron-phonon coupling in Sr2RuO4

    Full text link
    The lattice dynamics in Sr2_2RuO4_4 has been studied by inelastic neutron scattering combined with shell-model calculations. The in-plane bond-stretching modes in Sr2_2RuO4_4 exhibit a normal dispersion in contrast to all electronically doped perovskites studied so far. Evidence for strong electron phonon coupling is found for c-polarized phonons suggesting a close connection with the anomalous c-axis charge transport in Sr2_2RuO4_4.Comment: 11 pages, 8 figures 2 table

    Impact of Many-Body Effects on Landau Levels in Graphene

    Get PDF
    We present magneto-Raman spectroscopy measurements on suspended graphene to investigate the charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing gate-tunable magneto-phonon resonances, we extract the charge carrier density dependence of the Landau level transition energies and the associated effective Fermi velocity vFv_\mathrm{F}. In contrast to the logarithmic divergence of vFv_\mathrm{F} at zero magnetic field, we find a piecewise linear scaling of vFv_\mathrm{F} as a function of charge carrier density, due to a magnetic field-induced suppression of the long-range Coulomb interaction. We quantitatively confirm our experimental findings by performing tight-binding calculations on the level of the Hartree-Fock approximation, which also allow us to estimate an excitonic binding energy of ≈\approx 6 meV contained in the experimentally extracted Landau level transitions energies.Comment: 10 pages, 6 figure

    Statistical Mechanics of Community Detection

    Full text link
    Starting from a general \textit{ansatz}, we show how community detection can be interpreted as finding the ground state of an infinite range spin glass. Our approach applies to weighted and directed networks alike. It contains the \textit{at hoc} introduced quality function from \cite{ReichardtPRL} and the modularity QQ as defined by Newman and Girvan \cite{Girvan03} as special cases. The community structure of the network is interpreted as the spin configuration that minimizes the energy of the spin glass with the spin states being the community indices. We elucidate the properties of the ground state configuration to give a concise definition of communities as cohesive subgroups in networks that is adaptive to the specific class of network under study. Further we show, how hierarchies and overlap in the community structure can be detected. Computationally effective local update rules for optimization procedures to find the ground state are given. We show how the \textit{ansatz} may be used to discover the community around a given node without detecting all communities in the full network and we give benchmarks for the performance of this extension. Finally, we give expectation values for the modularity of random graphs, which can be used in the assessment of statistical significance of community structure

    Ein neues, unkompliziert auszuführendes Verfahren zur Bestimmung kleiner Konzentrationen an Wasser in organischen Lösungsmitteln

    Get PDF
    A new procedure for the determination of water (even in trace amounts) in organic solvents is described. The solvatochromism of the pyridiniumphenol betaine, E T30, determined by a simple UV-absorption measurement, together with a two-parameter equation, permits an exact determination. The procedure is rapid and is, therefore, an alternative to the Karl-Fischer titration

    Dispersion of the high-energy phonon modes in Nd1.85_{1.85}Ce0.15_{0.15}CuO4_4

    Full text link
    The dispersion of the high-energy phonon modes in the electron doped high-temperature superconductor Nd1.85_{1.85}Ce0.15_{0.15}CuO4_4 has been studied by inelastic neutron scattering. The frequencies of phonon modes with Cu-O bond-stretching character drop abruptly when going from the Brillouin zone center along the [100]-direction; this dispersion is qualitatively similar to observations in the hole-doped cuprates. We also find a softening of the bond-stretching modes along the [110]-direction but which is weaker and exhibits a sinusoidal dispersion. The phonon anomalies are discussed in comparison to hole-doped cuprate superconductors and other metallic perovskites

    The impact of ice crystal shapes, size distributions and spatial structures of cirrus clouds on solar radiative fluxes

    Get PDF
    The solar radiative properties of cirrus clouds depend on ice particle shape, size, and orientation, as well as on the spatial cloud structure. Radiation schemes in atmospheric circulation models rely on estimates of cloud optical thickness only. In the present work, a Monte Carlo radiative transfer code is applied to various cirrus cloud scenarios to obtain the radiative response of uncertainties in the above-mentioned microphysical and spatial cloud properties (except orientation). First, plane-parallel homogeneous (0D) clouds with different crystal shapes (hexagonal columns, irregular polycrystals) and 114 different size distributions have been considered. The resulting variabilities in the solar radiative fluxes are in the order of a few percent for the reflected and about 1% for the diffusely transmitted fluxes. Largest variabilities in the order of 10% to 30% are found for the solar broadband absorptance. However, these variabilities are smaller than the flux differences caused by the choice of ice particle geometries. The influence of cloud inhomogeneities on the radiative fluxes has been examined with the help of time series of Raman lidar extinction coefficient profiles as input for the radiative transfer calculations. Significant differences between results for inhomogeneous and plane-parallel clouds were found. These differences are in the same order of magnitude as those arising from using extremely different crystal shapes for the radiative transfer calculations. From this sensitivity study, the ranking of cirrus cloud properties according to their importance in solar broadband radiative transfer is optical thickness, ice crystal shape, ice particle size, and spatial structure
    • …
    corecore